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ON THE RHEOLOGICAL INSTABILITY OF AN ELASTIC DAMAGING MEDIUM* 

V.I. KONDAUROV 

A medium is examined that contains damage of the microcrack type 
scattered over the volume, whose number and dimensions can vary under the 
action of applied stresses. Such materials include brittle rocks, certain 
metal alloys, glass, etc. To describe the behaviour of such media a model 
of continuum fracture of elastic bodies /l/ is used based on the local 
balance between the effective surface energy of the microcracks and the 
cumulative elastic energy of the material surrounding the microcracks. 
The constraints on the allowable strain values imposed by the Hadamard 
condition /2/, which is a necessary condition for the correctness of any 
dynamic or quasistatic problems, are investigated in an isothermal 
approximation. These constraints play the part of a strength criterion 
that is closely associated with the internal structure of the rheological 
relationships used. 

It is shown that violation of the Hadamard condition, identifiable 
with the rheological instability of the material, is accompanied by the 
formation of stationary surfaces of strain discontinuity, where, unlike 
an elastic-plastic dilating material 13, 41, the origination of 
rheological instability is possible for the model being used in both the 
loading process and in unloading of the material. The orientation of the 
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strain discontinuity surface is found with respect to the principal axes 
of the strain tensor. 

Following /3/ and considering stationary strain discontinuity 
surfaces as boundaries of narrow strain localization zones that are 
typical structural elements of natural bodies and loaded laboratory 
specimens /5, 6/, the relationships obtained can be interpreted as 
generation conditions and spatial characteristics of macro-discontinuities 

in an elastic damaging medium. 

Two fundamental approaches can be extracted in the mathematical m4delling of the behaviour 
of a medium for which processes of generation and evolution of numerous defects scattered 
over the volume are characteristic. The first relies on methods of the theory of plasticity 

of dilatant materials. The characteristic features of the strain mechanism are: microcrack 

opening and closing, their generation and growth accompanied by friction slippage of the 

edges, taken into account by using the dependence of the yield point on the hydrostatic 

pressure, the non-associated law of plastic flow, taking account of inelastic volume 

compressibility, etc. The governing equations of such media were developed in /3, 7-9/. The 
other approach is associated with the theory of continual scattered fracture of solids 
/lo-12/, also called the theory of damagability, continuum theory of defects, etc. We shall 
later use the model of scattered fracture /l/ that is a continuum analogue of the Griffith 
approach in the mechanics of an isolated macrocrack /13/ to describe small isothermal strains 
of a homogeneous and initially-isotropic elastic damaging medium. 

1. hndmnenta2 equations of a damaging mediwn. Let e be the small strain tensor of a 
stress-free reference configuration x in a configuration x(t) of a body at a time t, e’ = 
e - ‘/,I (I : 8) is the deviator of the tensor e, 1, = I : E, J = (e' : e')'/* where I is the unit 
tensor of second rank and the colon denotes a double scalar product. Let N = e'lJ be a 
normalized strain tensor deviator for which the relationships 

hold. 

N:I=O, N:N=l (1.1) 

We will characterize damagability of a material by the scalar quantity W<l that is, 
the ratio between the mass densities in the reference body configuration x and the unloaded 
body configuration x* . As in pasticity theory, the unloaded configuration x* obtained from 

x (t) by removal of the stresses in each body element, is not identical with x,if inelastic 
strains preceded the unloading. 

Let us select the potential of the medium in the simplest form 

Pu (e> w) = ‘l&Z,’ + pJ2 - a,oZ, - a,Jo (1.2) 
(P, K+ CL, am a, = const > 0) 

where p is the mass density, K and p are the bulk compression and shear moduli, c+,, a, are 
parameters characterizing the decrease in the elastic energy density as the damagability o 
increases because of partial unloading of the material in the neighbourhood of microcracks as 
their number or size increases. 

An expression for the stress tensor /l/ follows from (1.2) 

T=p v=(KZ1-a,o)I+ (1.3) 

We will also specify the effective surface energy density Uf (0) by the simplest ex- 
pression 

PUf (0) = pq + “p + ‘/aW (1.4) 

(Q, y, p = const > 0) 

The resistance to the growth of fracturing in this case equals 

pG= p~?u,(o)/&~ = y + PO (1.5) 

Hence, the phenomenological meaning of the constants y and p is recognized. 
Two processes are possible in the material under consideration: passive, in which m'= 0 

and active, in which o'# 0. Moreover, assuming the microcracks not to be closed up in the 
time intervals under consideration, and energy to be expended in defect formation, we will 
assume that 020, w'>O in the active process. Then when there are no distributed heat 
sources and any kinds of energy, the condition of local balance of elastic and surface 



87 

energies in the active process can be written in the form 

au (8, o)/ao + G (0) = 0, o > 0, o'> 0 

The relation CJ (e) in the active process follows from (1.2) and (1.5) 

o=(c,Z,+%J-Y)lB, 020, we>0 (1.6) 

If a,Z, + a,J - y<O or the rate of change of the strain is such that cLpz; + a,J'< 0, 
then the passive process (W'=,?) is realized, which is either a process of deformation of 
the undamaged material (a= 0) or an unloading process in which w = o*, where o* is the 
value of the damagability at the time of passage from active loading to the unloading process 
under consideration. 

It is seen from (1.3) that when there is no damagability (o= 0) the connection between 
the stress and strain agrees with Hooke's law. During unloading (61= O* = conat) the stresses 
are connected with the strains by the relation 

T = KZ,I + Zpe’- T,, T,=a,o,I + a,o,N (1.7) 

Denoting the particle mass velocity vector by v and the gradient over the space variable 

x E x (& by V we can write the system of differential equations of the dynamics of an 
elastic damaging medium in the variables (v, e) in the form 

rpv' - V.T(e,o(e)) = 0, 2~' -V @ v - (0 @ v)~ = 0 (1.8) 

It is here taken into account that 61 is either a constant, or is connected with the strain 
e by the relationships (1.6). We neglect mass forces. 

Using (1.3), the variation of the stress tensor in the active process can be represented 
in the form 

6T = pL (e, o) : 6e 
where 

is a tensor of the fourth rank for the hypoelastic coefficients that are symmetric in the two 
first and last subscripts, i.e., Lijab = Ljiob = Lijbo. 

Therefore, the system of dynamic equations in the active process can be written in the 
form of a quasilinear system 

v'- L(e);(V @ e)= 0, Ze'- V QI v-(V @ v)T = 0 (1.10) 

where the symbol (I) denotes a triple scalar product so that the equality 

holds for arbitrary tetrads and triads. 
In the passive process when the particle damagability 0 = 0* is invariant in time 

(o*' = O), but variable in space, the system of differential equations is identical with the 
equations of the linear theory of elasticity of an inhomogeneous material 

v'_LL,(s)l(V~s)=-_.Vo,, 2e'-V@v-(V@v)T=O 

(L,(e) = @u(e, 0#e @ ae) 

(1.11) 

2. Propagation of weak discontinuities. Let II, (x, t) = 0 be the equation of a singular 
weak discontinuity surface and c = -agiatl] V$ ], v = V$l]Vg 1 the velocity of propagation and 
the normal to this surface 12, 14/. Let V and E denote the amplitude of jumps normal to the 
surface *((x, t) = 0 of derivatives of the velocity v(x, t) and the strain tensor s (x, 9. 
We will use the geometric and kinematic conditions on the surface of the weak discontinuity 
/2/, that follow from the condition of continuity of v.e on the surface under consideration 

[Cl=-cv, [V@gv]=v@V 

[e']==-cE, [V@e] =v@E 

Let the material on both sides of this surface be in an active or passive loading state 
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and, therefore, the components of the tensor L(s) are continuous together with c v,e. It 
then follows from system (1.10) 

cV + Li(v@ E)= 0, 2&+v@V+V@v=O (2.1) 

For a given surface v(s, t) = 0 and a given tensor L(e) Eqs.ta.1) are a system of 
homogeneous linear equations in the quantities V,E. A non-trivial solution of this system 
exists in addition to the solution V = 0,E = 0 if and only if 11, = 0 is a characteristic 
surface /14/ whose propagation velocity c is such that the determinant of the matrix of coef- 
ficients of system (2.1) vanishes for any given direction v of surface propagation. In this 
case the solution of system (1.10) can be continued through the surface $=O ina non- 
unique manner, with and without a discontinuity in the normal derivatives. 

It can be seen from (2.1) that any stationary surface ,@(x) = 0 with velocity c = 0 is 
a characteristic surface, where the quantity V thereon equals zero. 

To find the non-stationary characteristic surface (cf O), we 
in (2.1) by 2c and the second, on the left in a tensor manner by v 
Li. After subtracting the second equation from the first we arrive 
equation 

(?I - v.L.v).V = 0 

multiply the first equation 
and we use the operator 
at a homogenous linear 

(2.2) 

when account is taken of the above-mentioned symmetry of L. 
Multiplying (2.2) scalarly on the left by V we find 

(v~v):L:(v~v)=c~(v.v)>o (2.31 

Therefore, the necessary condition for hyperbolicity of system (l.lO), the reality of 
the propagation velocities of characteristic surfaces, reduces to a condition for the tensor 
of fourth rank L is positive-definite in dyads of a particular kind, one of whose components 
is the arbitrary non-zero vector v, while the second is the right eigenvector V of the acoustic 
tensor A (e, v) = v.L (e).v, corresponding to the positive eigennumber c* > 0. Since V = V (v), 
condition (2.3) is generally a weaker condition 

(v@b):L:(b&v)>O, Vb#O, a#0 (2.4) 

that expresses the property that L is positive-definite on arbitrary dyads and which is often 
called the Hadamard condition, the condition of strong ellipticity /15/, and SE is the con- 
dition /2/. 

The inequalities (2.3) and (2.4) are equivalent for the special case of a symmetric 
acoustic tensor A = AT, that holds for the model under consideration. 

Indeed, it follows from the symmetry of A that among the right eigenvectors that are also 
in this case left eigenvectors, an orthogonal basis v,, i = 1, 2, 3, can be selected. Any vector 
b can then be represented in the form 

I,= i b,Vi 
I=1 

Taking account of the orthogonality of vi we have 

(V 62 b) : L : (b @ v) = @ .biVi) . A . @ biVj) = ,i b;V, . A . V, 

Hence, the equivalence of conditions (2.3) and (2.4) follows. 
We will regard the state of the material particle governed by the strain tensor as e", 

rheologically unstable if a vector v,(s'), exists such that the velocity of propagation of a 
non-stationary weak discontinuity wave vanishes in the direction v0 i.e., C (e", v0 (80)) = 0. 

Hence, it follows directly that detA (e', vo(eO)) = 0; a non-trivial solution VO (e", vO) 
exists for the homogeneous equation A(eO,v,(eO)) .V, = 0; the quadratic form (2.3) is degenerate 
in the dyad vO @Vv,, i.e., 

(vO @ V,) : L (e”) : (V, @ vo) = 0 

Turning to the second of Eqs.(2.1) it can be seen that V+ V,# 0, as c-+0, while 
the amplitude E of the jump in the normal derivative of the strain tensor increases without 
limit, i.e., the weak discontinuity becomes strong on which the velocity is continuous while 
the strain undergoes a discontinuity. 

3. Conditions and modes of appearance of rheotogicat instability. We will examine the 
conditions for the origination and orientation of strain discontinuity surfaces. In the 
active process (020, o'> 0) an expression for the tensor of the hypoelastic coefficients 



follows from relationships (1.2) and (1.6). 
Here and henceforth, 1 is a unit tensor of the fourth rank, &a is the Kronecker delta, 

ai, a” 

hold 

are vectors of the natural and dual bases. The equalities 

a.i-b='/,(b~a+(a.b)I), t:B=‘/,(B+BT) 

for any vectors a and b and the tensor of second rank B. 
The acoustic tensor corresponding to (3.1) is written in the form 

pA(s,o(s),~)=M1+Av~v-_(~~n+n~v)--n~n, n~N.v 
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while (2.2) for non-stationary weak discontinuity waves will be 

(sI-Av~v+~(v~n+n~V)~~n~nn).V=O, S5pca-iM (3.2) 

Multiplying (3.2) scalarly by the vectors v, n. v X n where the symbol X denotes the 
vector product, we obtain a system of three equations 

(S - A -t f (v*nf) r -I (5 + rl (v-n)) Y = 0 (3.3) 
-(h(v.n)-_((n.n))lf(S+E(v.n)$.Il(n.n))Y=O 

sz = 0 

where .r= V-V, y =n.V, z EZ (v X n)*V. 
1f v is not an eigenvector of the normalized deviator N such that v X ng 0, system 

(3.3) is equivalent to (3.2). A non-trivial solution of system (3.3) is possible under the 
condition 

where 
S (SF-- 2pS - q) = 0 (3.4) 

(3.5) 

The roots of (3.4) are 

pc,,aa = M -I- P + IlP" + Q¶ pea = M (3.6) 

Degeneration in cS sets in for strains governed by the condition 

rp (II, J)G o&o (I,, J)IJ = 2p (3.7) 

In this case the vector v is arbitrary while V is orthogonal to a plane drawn through 
the vectors v and n since 2=y=o follows from the first two equations in (3.2). 

We will now find the vector that makes the quantity p~,~(e,v)reach an extrem~.Without loss 
of generality v can be assumed to be a unit vector; consequently, we will seek the extremum 
by the method of Lagrange multipliers. We write the Lagrange function in the form 

cP(e,v)= pc,"(s,v)--/~xv.v 

where ?t is the unknown Lagrange multiplier. 
Taking (3.6) into account, the extremum condition is written in the form 

Multiplying this equation scalarly by v, we obtain 

%= 21'$i*+e 
--1 (2s,$+. -$j+ 

Taking this expression and relationships (3.5) into account, the extremum conditions are 
written in the form 
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(I-v@v).B.v=O (3.8) 

B=S,{(pN2-@-'(o,l -ta,N)2} + 5(N2 - 2(v.N.v)N) 

It follows from relationships (3.8) that v is an eigenvector of the symmetric tensor 
B. By virtue of the polynomial representation of B as a function of N, the eigenvectors of 
the tensor Nare eigenvectors of B. The converse assertion is generally not true since eigen- 
vectors forB but not for N as well, can exist. 

If a coordinate system is used whose orthonormalized basis coincides with the principal 
axes of the tensor Nat the point under consideration, then (3.8) is written in this basis in 
the form of three scalar equations 

{(4 - B2) vae + (B, - B3)YaS} vi = 0 (1 2 3) 

where 31, B,, B, are the eigenvalues of B. 
It follows from 13.9) that the non-trivial solution Y-V = 1 exists in three cases: 1) 

Y is an eigenvector of the tensor N, the eigenvalues of the tensor B are distinct; 2) the 
vector Y belongs to a plane passing through two eigenvectors of the tensor N, two eigenvalues 
of the tensor Bare identical; 3) the tensor B is global. 

Let us examine each case in greater detail. Let ei (i= 1,2,3) denote the ortho- 
normalized basis in agreement with the principal axes of the stress deviator. Then N = N,e, 
6 e, + N,e, 6 e2 + N,e, @ es, where IV+ are eigennumbers of the normalized stress deviator 
To fix our ideas, let v =el in the first case. Then N.v = N,v, v.N.v=Nlr v.NZ.v = N,=. 
Taking into account that v x N+v = 0, we find the propagation velocity c2 of the surface of 
weak discontinuity: pcza = M for p > 0; pcza = M + 2p for P < 0. It hence follows that for 

h + 2y (N,Z + l/z) > p-' (op + a,NZ 

rheological instability sets in our 'p = 2u. The orientation of the surfaces of strain dis- 
continuity can be arbitrary. 

For p (0, which is equivalent to the condition 

h 4 )A - p-1 (ap + a,N# + m (N,a - Vg) < 0 

the minimum perturbation velocity vanishes for strains governed by the equation 

h + 2p - p-1 (a, + 'lJN,)a i- rp (N,2 - 2/s) = 0 (3.10) 

The vector V, characterizing the amplitude of the weak discontinuity is identical in 
this case with the vector Y, apart from sign, which enables us to call this mode of appearance 
of the rheological instability a tension (compression) strain discontinuity. 

It follows from (3.10) that the case under consideration can be realized for N,-(IV,< 
N,' where N,* = (-czP& v(h + 2p)jVa,. If N1*< --1/T, i.e., h + 21L < p-1 (ap - a, VTP, 
the material becomes rheologically unstable at once, as soon as the cumulative damagability 
process starts. 

Turning to the second modification and setting vie $- Vz2 = 1, Ya = 0, it can be seen that 
the third equation of system (3.9) is satisfied identically while B, = B, and 

(3.11) 

follows from the first two relationships. 
The minimum root cp of the equation 

p&s 55 M 'i-p-vrp*+q=o (3.12) 

defines a line in the plane (I,,J) at whose points the material becomes rheologically 
unstable. Since p- I/.pa+ q < 0 for all p and all q>O, the degeneration sets in for M> 0. 

The amplitude of the discontinuity is characterized by normal and tangential components. 
The third case, when the tensor B is global and all three components of the vector v 

are non-zero is realized only for a particular form of the state of strain, uniaxial strain 

s = se, @ ee, N = i_ t/zi, e, @ ez =F fel @ e, + e, @ e,! *@ 

In this case the components of the extremal normal vector satisfy the equation 

zv,a - (Yl* + Vs*) = (5 - 11s, f 2 +a&)/(zg) (3.13) 

which yields the surface of a circular cone with axis e,. The semi-apex angle Y of this 
cone is given by the expression 

sin* Y = =/a - 'i,<-' (7) * 2g fz)js, 

which is identical with the first equation of (3.11) for &,'= 'ia, Na" = Naa = 'Is. 
To prove the relationship (3.13), we note that the global part of the tensor Na equals 
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'/*I because of the identitites (1.1). This means that the deviator of the tensor B defined 
by the second relationship of (3.8) equals zero under the condition 

(~(v.N.v)+ Z&S,} N == (;- qS&N'--/& (3.14) 

Hence it follows, when the operator N: operates on both sides of the equality, that 

5 (v.N.v)= (5 - ?&)N8: I - 2& 

Substituting this expression into (3.14), for L-n&=/=0 we arrive at the equation 

(No : I) N = Nz - '/sI (3.15) 

defining the particular kinds of strains for which realization of the case under consideration 
is possible. 

Taking into account that N9:1= 3NrX,iic, holds in the principal axes of the tensor N, 
the tensor Eq.(3.15) can be written in these axes in the form of three scalar equations 

(1 - 3N,NJ Nla = 1/a (1 2 3) 

Taking (1.1) into account, the equation (s/a - 3N,') N,= = 'Is with the solutions N,' = V, 
ahd Nla= ‘fa hence follows. 

By virtue of the symmetry of the system of equations, there are exactly the same sol- 
utions for XV, and NS. 

The question arises which of the three cases is ralized. We will assume that the mode 
of appearance of rheological instability that is realized is the one that corresponds to the 
least value of the parameter cp azc~,o(I,,J)/J. Indeed, for J>O lines passing through the 
point (y/a,, 0) with slope hi = %%l(cp,B - s3 corresponds to the quantities CJJ = cpi, cpi = 
const (i = i, 2) in the (ZI,J) plane. During deformation with any continuous trajectory 
starting at the point (O,O), the first will intersect a line forming the maximum positive 
angle with the I, axis, i.e., corresponding to the minimum value of 9. 

We will now examine the conditions for rheological instability of a material in a passive 
process. In this case 

f'L(a',‘%) = (a-t- %',)I @ 1 + (P--'/A&) i + 'p*N @N (3.16) 

Eq.(2.2) is written in the form 

(3.17) 

The condition for (3.17) to have a non-trivial solution is 

which results in expressions analogous to (3.6) for the propagation velocities of waves of 
,weak discontinuity in a material under passive strain. 

If the expression 

is used, where cc is the angle between the vectors Y and n and the inequality 

- I A* 1 ,<A,cos2a,< IA, I 
from which there follows 

then the condition for real wave propagation velocities to exist can be written in the form 

M, SB-"/a'Pz > 0, A* -t M, rL+- 2p -*/@*>'o (3.18) 

For p >O, a-f- 2p>0 from which it follows that undamaged material (o= 0) is deformed 
stably, unlike damaged material being unloaded. 
a shear intensity J>O 

Indeed, for any damagability level % > 0 
is found for which one of the relationships (3.18) will cease to 

hold. If K >0 then rheological instability sets in for a shear intensity 
that makes the stress deviator vanish. 

J = a,o,/Zp, 
This mode of rheological buckling with removal of the 

shear stresses can occur for arbitrary orientation of the strain discontinuity surfaces. 

P. Exumptes. We will examine the conditions for rheological instability to occur for 
certain characteristic kinds of state of strain. 

Globa Strain Tensor. In this case e = &I, J = 0, the normalized deviator N is undefined. 
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Turning directly to (3.1) for the tensor L it can be seen that the coefficients A,M, q will 
be unbounded for 0 + 0. This means that the undamaged material will lose its continuity as 
soon as I, = rlap. In other words, under multilateral tension the relationship 1, <y/e, 
is the traditional criterion for the strength of a material. We note that multilateral 
compression (I, < 0) does not cause cumulative damage of the medium under consideration. 

Vniaxia1 Strain i: = ez,Bt~~. In this case 

II=& J=1.%)1/%, N = x(l%ez 8 e2 - (el @ el fes @ es)/@) 

where i( = sign e. Turning to condition (3.10) for the formation of strain discontinuity 
planes perpendicular to the principal axes of the tensor N, we find 

For strain discontinuity surfaces at an angle to the principal axes of the tensor N, the 
minimum value ,$(P) is given by (3.12) in which the quantities V?PS4 are determined in 
conformity with (3.5) and (3.13) by the expressions 

Yl* + va* = l/s (1 - e,), Y 8% = l/g (2 + 8,), P = 'I(1 (2 + 8,) (1 - 8r) 
p = A + 2x5 (i -- @,)/r/T - l/sq (I + vset) 

et E 5-1~ cq + 2x5 1/@2 

Depending on the specific values of the parameters of the medium, both the first and 
second cases can be realized. For example, for h= cp= a,= fl= P the values are To) = 2.03, 
eoJ = 1.65, i.e., the rheological instability of the material under uniaxial tension appears 
in the form of the formation of conical strain discontinuity surfaces. On the other hand, for 
c+ = a, -= S = P, h = 0.2p layers of discontinuity surfaces perpendicular to the boundary are 
formed first for q(l), 0.43 which can be interpreted as the prototype of separation cracks 
in compressed rocks /lb, 17/. 

Pure Shear e = e (e, 3 q - es 50 es), E > 0. In this case I, = 0, J = e j/i?, Xl = -IV, = lllfi; NJ = 0. 
The least value of 'p corresponding to tension strain discontinuity surfaces equals $#) = 6 
(h + 2~ - S-l(ap + CC&?@) by virtue of (3.10). The appearance of a rheological instability in 
the mode of strain discontinuity planes close to planes of maximum tangential stress in 
orientation corresponds to the least root I$*) of (3.12) in which vl, * = '/, * e., 2p = A - '/r'l - 

2l/~%& 4 = 5 ('1, - 28,). where %E k'%5-'M. As for uniaxial strain, both the first and the second 
cases can be realized depending on the specific values of the parameters of the medium. Thus 
e(l) = 0.51, $2) = 1.5 for ~-P=cc,=~~= S,i.e., strain discontinuity planes perpendicular to 
the tension axes are formed first. For A.=l,2P,a,=a,=fi=P e(r) = 2.01, @’ = 1.85, holds, 
l.e., a relatively small change in the moduli can result in a change in the mode of appear- 
ance of the rheological instability. 
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DUAL FORMULATIONS OF THE BOUNDARY-ELEMENTS METHOD, 

APPLI~ATIDN TO ELASTICITY THEORY PROBLEMS FOR INHOHO~ENEOUS BODIES* 

V.YA. TERESHCHENKO 

Alternative variational formulations are considered for the 
boundary-elements method (BEM) that utilize the formulation of 
minimization problem of boundary functionals and generalized Trefftz 
functions of linear elasticity theory /l/. The variational solutions 
are approximated by using boundary potentials with the desired density: 
the formulation in displacements (line) in place of the interpolation 
considered earlier of the double layer potential (DLP) density uses 
interpolation on the boundary element (BE) of the simple layer potential 
(SLP) density according to the nodal values of the displacements; the 
dual formulation is interpolation on the BE of the PLP density according 
to the nodal values of the stresses. 

It is best to use the formulation for solving problems of 
elasticity theory with mixed boundary conditions, contact problems. In 
particular, the dual formulation turns out to be effective in solving 
problems for elastic media with discontinuous elasticity coefficients 
(piecewise-hom~eneous); adjoint conditions must be realized in the 
corresponding variational problem for both the displacement vector and 
for the stress vector on the surface of discontinuity of the 
coefficients. The results obtained in /l/ and in this paper are 
compared with the results arising from other BEM formulations. 

1. Duality of the kinematically allowable displacements and statically allowable stresses 
resulting from the Lagrange-Castigliano principle /2, 31 is known in linear elasticity theory. 
A corresponding assertion for surface displacements and stresses follows from dual variational 
principles for the boundary functionals in problems with bilateral and unilateral constraints 
on the boundary /4, 5/. The connectedness of the dual formulations of the variational problems 
(the explicit connection between the variables of the problems in terms of the governing 
relationships on the boundary) results in identical systems of boundary equations of the Ritz 
process. 

As in /l/ we will give a brief description of the direct BEM formulation on the basis 
of a problem for a boundary functional 

gD” E (cp), F(tp) =59)t(V)(~)ds-22~t(~)(~*)ds 
8 is 

(1.1) 

~(cp)=(~~Arp(z)=O, rEG, s cpdC=irotqdG=O] 
c 

Here cp is the displacement vector, 
elasticity theory, GcE, (m = 2, 3) 

A is a vector operator of isotropic homogeneous 

5' with external normal v, W (II*) 
is a bounded domain with a sufficiently smooth boundary 

is the vector of the given stresses at points of S. 
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